Manual Tracing
Tracing operations
See Quick Start guide on how to install and configure Graphsignal tracer.
Python
To measure and monitor operations that are not automatically instrumented, wrap the code with trace()
method or use @trace_function
decorator.
To record payloads and track usage metrics, use Span.set_payload()
.
with graphsignal.trace('my-operation') as span:
...
span.set_payload('my-data', data, usage=dict(size=my_data_size))
@graphsignal.trace_function
def my_function():
...
Tracing LLM calls
When tracing LLM generations, provide payloads in OpenAI format, which is supported by Graphsignal. Set model_type='chat'
tag and add input and output data as input
and output
payloads respectively.
Python
with graphsignal.trace('generate', tags=dict(model_type='chat')) as span:
output_data = my_llm_call(input_data)
...
span.set_payload('input', input_data, usage=dict(token_count=input_token_count))
span.set_payload('output', output_data, usage=dict(token_count=output_token_count))
Exceptions
Python
For auto-instrumented libraries, or when using @trace_function
decorator, trace()
method with with
context manager or callbacks, exceptions are automatically recorded. For other cases, use Span.add_exception
.